Axial vessel widening in arborescent monocots.
نویسندگان
چکیده
Dicotyledons have evolved a strategy to compensate for the increase in hydraulic resistance to water transport with height growth by widening xylem conduits downwards. In monocots, the accumulation of hydraulic resistance with height should be similar, but the absence of secondary growth represents a strong limitation for the maintenance of xylem hydraulic efficiency during ontogeny. The hydraulic architecture of monocots has been studied but it is unclear how monocots arrange their axial vascular structure during ontogeny to compensate for increases in height. We measured the vessel lumina and estimated the hydraulic diameter (Dh) at different heights along the stem of two arborescent monocots, Bactris gasipaes (Kunth) and Guadua angustifolia (Kunth). For the former, we also estimated the variation in Dh along the leaf rachis. Hydraulic diameter increased basally from the stem apex to the base with a scaling exponent (b) in the range of those reported for dicot trees (b = 0.22 in B. gasipaes; b = 0.31 and 0.23 in G. angustifolia). In B. gasipaes, vessels decrease in Dh from the stem's centre towards the periphery, an opposite pattern compared with dicot trees. Along the leaf rachis, a pattern of increasing Dh basally was also found (b = 0.13). The hydraulic design of the monocots studied revealed an axial pattern of xylem conduits similar to those evolved by dicots to compensate and minimize the negative effect of root-to-leaf length on hydrodynamic resistance to water flow.
منابع مشابه
Wood Anatomy of Lamiaceae. A Survey, with Comments on Vascular and Vasicentric Tracheids
Quantitative and qualitative data are presented for 44 collections representing 42 species in 27 genera. Lamiaceae basically have: vessels with simple perforation plates; vessel-to-vessel pitting alternate; imperforate tracheary elements alllibriform fibers, fibers commonly septate; axial parenchyma scanty vasicentric; rays Heterogeneous Type liB. These features ally Lamiaceae closely with Verb...
متن کاملStress Concentration Factors in Spherical Vessels with Single Oblique Nozzle
Finite element method is employed to analyze the spherical vessel intersected by an oblique cylindrical nozzle. In this survey the stress and strain distributions on acute and obtuse sides of the connection under internal pressure are studied widely although axial and moment loadings on the nozzle are also studied briefly. Stress concentration factors for a wide range of geometrical ratios in t...
متن کاملStem Vascular Architecture in the Rattan Palm
Climbing stems in the rattan genus Calamus can reach lengths of well over 100 m, are long-lived, and yet their vascular tissue is entirely primary. Such a combination suggests that stem vasculature is efficient and resistant to hydraulic disruption. By means of an optical shuttle and video recording of sequential images we analyzed the stem of a cultivated species. The stem has vascular feature...
متن کاملWood and Stem Anatomy of Convolvulaceae
ABSTRACf Quantitative and qualitative features of wood and stem anatomy are presented for 44 collections of 16 genera and 35 species ofConvolvulaceae. Markedly furrowed xylem characterizes the genera of tribe Cresseae. Successive cambia occur in 11 of the genera studied. Large patches of axial parenchyma occur in many of these; only in one species was interxylary phloem (formed internally by th...
متن کاملScaling of Xylem Vessel Diameter with Plant Size: Causes, Predictions, and Outstanding Questions
Purpose of Review This review shows that a more or less constant rate of tip-to-base vessel widening across species, together with the assumption that wider vessels are more vulnerable to embolism, suggests how climate should limit maximum vegetation height; together, these two factors predict a maximummean vessel diameter permitted by temperature and water availability at a site and thus maxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2014